A fast occlusion effect calculation method by multi-view inverse orthographic projection in 3D holographic display

Jia Jia, Juan Liu, Guofan Jin, and Yongtian Wang

Department of Precision Instrument
State Key Laboratory of Precision Measurements
Tsinghua University
Beijing, China
jiujia0864@126.com

01-July-2015 Saint-Petersburg, Russia
Outline

- Introduction
- Occlusion culling using inverse orthographic projection
- Design of the angular sampling pitch
- Implement and results
- Conclusion
Introduction

- Occlusion
 - Multi-object occlusion
 - Self occlusion

- Occlusion culling
 - Computation load reduction
 - Crosstalk reduction
 - Correct depth cues production
 (motion depth cues)

Viewing/Hologram Plane

Left viewpoint

Right viewpoint
Introduction

- Occlusion culling methods
 - Based on Ray light
 - Holographic stereogram
 - Multi projection
 - Based on Extra samplings
 - Mask based
 - Ray-tracing
 - Others
 - Ray-wave conversion

- The limitation
 - Limited to reconstructed deep scene with continue depth
 - No accommodation cue
 - Heavy computational load
 - Poor quality of reconstructed image for deep scene

Occlusion culling using inverse orthographic projection

- The principle of our occlusion culling method
 - Step 1: The multiple light point sampling planes are used to remove the hidden surface for each direction of views.
 - Step 2: Inverse orthographic projection is used to obtain the 3D points in real 3D space without any distortion.
 - Step 3: The sub holograms are calculated by the corresponding 3D light points based on wave front.
Occlusion culling using inverse orthographic projection

Occlusion culling of multi objects

\[H_{ij}(x, y) = \sum_{m=0}^{M} \sum_{n=0}^{N} A_{ij}(m, n) \exp\left(\frac{2\pi}{\lambda} r_{ij}(m, n)\right) \exp(i\phi_{ij}) \]

\[\text{Holot}(p, q) = H_{ij}(p-k \times \frac{s_x}{\Delta u}, q-l \times \frac{s_y}{\Delta u}) \]

Occlusion culling using inverse orthographic projection

- Performance of the orthographic projection process by virtual cameras arranged in a spherical configuration.

Orthographic projection

Perspective projection

Virtual cameras arranged in a spherical configuration

θ_1, θ_2 are angular sampling pitch.
Occlusion culling using inverse orthographic projection

- Designed of angular sampling pitch

\[\theta = \arcsin \left(\frac{2D \tan(\varepsilon/2)}{l} \right) \]

- D: the observe distance
- \(\varepsilon \): the resolution of human eyes
- \(l \): the distance between two object points

The angular sampling pitch will be large when reconstructing 3D objects with smooth surfaces or shallow depths.
Implement and results

- Occlusion effect

Simulation results

Optical experiment results

Implement and results

- Reconstruction of a deep 3D scene with continuous depth

![Diagram showing 3D scene with different focus depths](image-url)
Implement and results

Experimental system

Spatial light modulators (SLM)
Holoeye Pluto
Resolution: 1920 × 1080
Pixel pitch: 8um
Screen size: 15.36mm × 8.64mm

Viewing zone angle: 22.8 degree
Conclusion

- A fast occlusion effect calculation method is proposed by multi-view inverse orthographic projection in 3D holographic display.

- The reduced angular sampling method is proposed using the advantage of the limitation of human eyes.

- The experimental system is built up by tiling 6 SLMs, and 22.8 viewing angle is obtained.
Thanks for your attention!