

Fourier transform CGH

 Multiply a random phase factor before calculating the Fourier transform

Original image in the input plane

Hologram

Reconstructed and conjugate image

Fourier transform CGH • Reference beam (Collimated light at an angle of θ_R) $R(X,Y) = R_0 \exp[i(-kY\sin\theta_R + \psi_R)]$ When $\theta_R = 0$ (normal to the hologram) $R(X,Y) = R_0$

Fourier transform CGH

• Total intensity on the hologram

$$I(x, y) = |O + R|^2 = |O|^2 + |R|^2 + R^*O + RO^*$$

= $|O|^2 + R_0^2 + 2R_0 \operatorname{Re}\{O\}$

 The DC term, or non diffracted light is numerically removed from figures but took into account for diffraction efficiency

With 0-th order

Diffraction Efficiency

• The absolute diffraction efficiency (DE) defined as:

$$\eta = \frac{I_{+1}}{I_i} \times 100 [\%]$$

where, I_i and I_{+1} are the intensity of the incident light and the 1-st order diffraction. In this research, I_{+1} is calculated as total intensity in the reconstructed area

Peak Signal-to-Noise Ratio

 Peak Signal-to-Noise Ratio (PSNR) is defined as:

PSNR =
$$10 \log_{10} \frac{255^2 mn}{\sum_{i=0}^{m-1} \sum_{j=0}^{m-1} [I(i, j) - K(i, j)]^2} [dB]$$

where I is the original image and K is the reconstructed image in the reconstruction area

• Brightness of *K* is normalized to have the same mean value of *I*

• $|O|^2$ term works as noise to the hologram (BR=5, DE = 9.0 %, PSNR = 16.1 dB)

Original image

reconstructed image

DE and PSNR against BR

Rigorous calculation

To separate |O|² term, reduce image size (or increase hologram size) works, but...
(BR=10, DE = 7.4 %, PSNR = 27.4 dB)

Original image

reconstructed image

Normalized Hologram

• When BR increases, contrast of *I* decreases

$$I_n = \frac{I - I_{\min}}{I_{\max} - I_{\min}} I_{\max}$$

Dashed line: Normalized

Bipolar Intensity

• Remove $|O|^2$ $I(x, y) = |O + R|^2 = |O|^2 + |R|^2 + R^*O + RO^*$ $= |O|^2 + R_0^2 + 2R_0 \operatorname{Re}\{O\}$ $\Rightarrow A + \operatorname{Re}\{O\}$

'A' is a constant to make all value of I(x, y) positive.

Bipolar intensity calculation

• Eliminating |O|² term makes hologram clear (DE = 9.2 %, PSNR = 24.6 dB)

Original image

reconstructed image

Bipolar intensity calculation

Comparing calculations

Calculation type	DE [%]	PSNR [dB]	Beam ratio
Rigorous	3.03	30.0	200
Rigorous (large)	7.40	27.4	10
Normalized	8.59	24.4	200
Bipolar	9.16	24.6	-
Smaller $\Delta \phi$	2.57	35.8	

Comparing calculations

	Phase		Amplitude		
Calculation type	DE [%]	PSNR [dB]	DE [%]	PSNR [dB]	Beam ratio
Rigorous	3.03	30.0	0.24	31.8	200
Rigorous (large)	7.40	27.4	0.65	52.0	10
Normalized	8.59	24.4	0.74	31.8	200
Bipolar	9.16	24.6	0.75	47.2	-
Smaller $\Delta \phi$	2.57	35.8			22

Comparing calculations

	Phase		Amplitude		
Calculation type	DE [%]	PSNR [dB]	DE [%]	PSNR [dB]	
Rigorous	3.03	30.0	0.24	31.8	
Rigorous (large)	7.40	27.4	0.65	52.0	10
Normalized	8.59	24.4	0.74	31.8	A. M. A.
Bipolar	9.16	24.6	0.75	47.2	di A
Smaller $\Delta \phi$	2.57	35.8			

Conclusion

- Propose to use DE and PSNR to evaluate image quality objectively
- Bipolar intensity with smaller $\Delta \phi$ shows balanced quality
- Phase hologram can get larger DE than amplitude hologram but smaller PSNR

Future works

- Kinoform?
- Evaluation of 3D characteristics needs to be considered