Image Formation of Hologram Reconstruction by Liquid Crystal on Silicon Device

Chau-Jern Cheng, Chung-Hsin Wu, Han-Yen Tu, Junchang Li, and Jinhua Qi

1Institute of Electro-Optical Science and Technology
National Taiwan Normal University, Taiwan

2Department of Life Science, National Taiwan Normal University, Taiwan

3Department of Electrical Engineering, Chinese Culture University, Taiwan

4Faculty of Science, Kunming University of Science and Technology
Kunming, China

E-mail: cicheng@ntnu.edu.tw

St. Petersburg, Russia // June 28-July 3, 2015
OUTLINE

1. Introduction
 - Holographic film vs SLM
 - SLM pixel size and viewing angle
2. Image Formation and Properties
 - SLM-based Holographic display
 - SLM device structure
 - Depth of focus
3. Experiments
 - Experimental setup and procedure
 - Phase modulation of LCOS device
 - Results and analysis
4. Potential Applications
5. Summary
Introduction
Technical performance of SLM device

Basic structure of SLM device

Holographic film v.s. SLM

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Holographic film</th>
<th>SLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging process</td>
<td>Wet/Dry-chemical process</td>
<td>Electro-optical conversion</td>
</tr>
<tr>
<td>Display type</td>
<td>Transmission/Reflection</td>
<td>Transmission/Rreflection</td>
</tr>
<tr>
<td>Display area</td>
<td>>50-60 cm²</td>
<td>1.5 x 0.7 cm²</td>
</tr>
<tr>
<td>Resolution</td>
<td>>3,000 lps/mm</td>
<td>6.4 µ (3.74 µ)*</td>
</tr>
<tr>
<td>Structure</td>
<td>Continues</td>
<td>Pixelated</td>
</tr>
<tr>
<td>Operation</td>
<td>Static</td>
<td>Dynamic & Reconfigurable</td>
</tr>
</tbody>
</table>

*Jasper Display: http://www.jasperdisplay.com/tw/
Introduction

- SLM pixel size and viewing angle

Optical reconstruction of digital/computer hologram

Optical reconstruction for 3-D virtual image

Wavelength (λ): 532 nm
Pixel size (Δx): 6.4 μm
Viewing angle: $2\theta_{\text{max}} = 2 \sin^{-1} \left(\frac{\lambda}{2\Delta x} \right) \approx 5^\circ$
SLM-based holographic display

- Phase hologram

Coordinate for LCoS-based holographic display

Phase hologram formation
- Diffracted light of "virtual object" pass through SLM-based holographic display system
- Light field formed by a point source P of the "virtual object", in the plane $z=0$

\[
\psi(x, y, \xi, \eta) = \frac{\exp(jkd)}{f} \delta(x - \xi, y - \eta) \exp \left(\frac{jk}{2d} \sqrt{(x - x_0)^2 + (y - y_0)^2} \right) dx_0 dy_0
\]

The expression of a phase hologram with unitary amplitude

\[
\psi'(x, y, \xi, \eta) = \frac{1}{f} \exp \left(\frac{jk}{2d} \sqrt{(x - \xi)^2 + (y - \eta)^2} \right)
\]

Phase hologram on LCoS device

15/09/2015 / C. J. Chang
SLM-based holographic display
- Image formation and properties

- The phase hologram formed in LCoS
 \[H_s(x, y; \xi, \eta) = w'_s(x, y; \xi, \eta)w(x, y) \]

- The window function of SLM device

 Aperture of the SLM
 \[w(x, y) = \text{rect}(\frac{x}{N_s \Delta x}) \cdot \text{rect}(\frac{y}{N_s \Delta y}) \]

 Pixel of the SLM
 \[w_s(x) = \text{rect}(\frac{x}{\Delta x}) \cdot \text{comb}(\frac{x - \Delta x/2}{\Delta x}) \]
 \[w_s(y) = \text{rect}(\frac{y}{\Delta y}) \cdot \text{comb}(\frac{y - \Delta y/2}{\Delta y}) \]

Device structure and coordinate definitions

- Image formation and properties
 - LCoS parameters
 - Pixel number \((N_x, N_y)\), pixel size \((\Delta x, \Delta y)\), and fill factor \((\alpha, \beta)\)
SLM-based holographic display

Impulse response

According to the Fourier optics, the reconstructed image in the Fresnel plane is

\[h(x, y; \xi, \eta) = \frac{1}{2d} \exp \left[\frac{jk}{2d} \left(\xi \Delta x + \eta \Delta y \right) \right] \]

\[= \exp \left[-\frac{jk}{2d} \left(x^2 + y^2 \right) \right] \ast \left[\exp \left(-j \frac{2 \pi}{\lambda} \left(\frac{x^2 + y^2}{2} \right) \right) \right] \]

A simplified result in the case of the zero diffracted order

\[h_0(x, y; \xi, \eta) = \frac{1}{2d} \exp \left[\frac{jk}{2d} \left(\xi \Delta x + \eta \Delta y \right) \right] \ast \left[\exp \left(-j \frac{2 \pi}{\lambda} \left(\frac{x^2 + y^2}{2} \right) \right) \right] \]

\[= \frac{1}{2d} \exp \left[\frac{jk}{2d} \left(\xi \Delta x + \eta \Delta y \right) \right] \ast \left[\exp \left(-j \frac{2 \pi}{\lambda} \left(\frac{x^2 + y^2}{2} \right) \right) \right] \]

The reconstructed image

- Modulated by sinc function of SLM array size (Large array size for high quality reconstruction)
- 3-D object can be considered as a collection of many point sources in space, so this analysis method can be applied to 3D reconstruction
SLM-based holographic display

- Depth of focus

The depth of focus as a function of $[\text{sinc}(x/T_s)]^2$

- The reconstruction distance $d' \neq d$
- The light intensity distribution at image plane is proportional to $[\text{sinc}(x/T) \text{sinc}(y/T)]^2$

\[2T = 2T_s = \frac{\lambda d}{N_s \Delta x} = \frac{|d - d'|}{d} N_s \Delta x \]

Depth of focus:
\[d_s = \frac{2\lambda d^2}{(N_s \Delta x)^2} \]

Recording configuration:
- Wavelength (λ): 532 nm
- Pixel number (N_s): 1024
- Pixel size (Δx): 6.4 μm
- Diffraction distance (d):
 - $d = 400$ mm \(\Rightarrow d_s = 3.96 \) mm
 - $d = 1200$ mm \(\Rightarrow d_s = 35.67 \) mm

- The depth of focus depend on diffraction distance and device parameters
- A long diffraction distance has large depth of focus
- 3D reconstruction image can be resolved in the depth of focus
Experiments

- Setup and Procedure

Experimental setup of the LCoS-based holographic display

- Light source: DPSS Laser
 - Wavelength: 532 nm
- SLM: liquid crystal on silicon device (LCoS)
 - Size: 1920x1080, 6.4 μm
- Focal length of Lens: 300 mm (L₁)
 - 150 mm (L₂)
- CMOS sensor: 2560x1920, 2.2 μm
- BP: band-pass filter

Optical reconstruction

Spatial frequency plane

Image plane
Experimental
Spatial resolution

Target to be recorded

<table>
<thead>
<tr>
<th>Number</th>
<th>Line Pairs / mm</th>
<th>Line width (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78.1</td>
<td>6.4</td>
</tr>
<tr>
<td>2</td>
<td>39.1</td>
<td>12.8</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>19.2</td>
</tr>
<tr>
<td>4</td>
<td>19.5</td>
<td>25.6</td>
</tr>
<tr>
<td>5</td>
<td>15.6</td>
<td>32.0</td>
</tr>
<tr>
<td>6</td>
<td>13.0</td>
<td>38.4</td>
</tr>
<tr>
<td>7</td>
<td>11.7</td>
<td>44.8</td>
</tr>
<tr>
<td>8</td>
<td>9.8</td>
<td>51.2</td>
</tr>
<tr>
<td>9</td>
<td>8.7</td>
<td>57.6</td>
</tr>
<tr>
<td>10</td>
<td>7.8</td>
<td>64.0</td>
</tr>
</tbody>
</table>

Optical reconstruction image

Reconstruction plane

Cross-section profile at “line pair 4”
Experimental results

Depth of focus

Object planes at different depths

Optical configuration:
- Reconstruction distance: $d = 263$ mm
- Depth of focus: $d_f = 1.4$ mm
- Spacing between sectors $d_v/3 = 0.47$ mm

Reconstruction at different distances by shifting camera

Camera positions:
- Reconstruction distance: $d = 263$ mm
- Shift distance $\Delta d = 0.5$ mm
Potential Applications

- SLM-based holographic display with paraxial optical system

- Ray matrix optics and scalar diffraction theory can be applied to SLM-based holographic display architecture combining with paraxial optical systems.
- Paraxial optical system can be a telescopic imaging, 4-f processing system et al.
- The image formation and properties can be also obtained by the proposal method.

15/01/2015 / C. J. Cheng
Summary

- This work describes the image formation and properties of the SLM-based holographic 3D display.

- The impulse response and the depth of focus of hologram reconstruction depend on both optical configuration and SLM device structure.

- This approach can be applied to analyze a more general case of SLM-based holographic display with paraxial optical system.
Thank you for your attention

Collaboration work

Chau-Jern Cheng
Institute of Electro-Optical Science and Technology
National Taiwan Normal University, Taiwan
E-mail: cjcheng@ntnu.edu.tw

Chung-Hsin Wu
Department of Life Science, National Taiwan Normal University, Taiwan

Han-Yen Tu
Department of Electrical Engineering, Chinese Culture University, Taiwan

Junchang Li and Jinbin Gui
Faculty of Science, Kunming University of Science and Technology, China