AUTOMATION THE PROCESS OF CREATION A VIDEO FROM A TIME SEQUENCE OF DIGITAL HOLOGRAMS OF PARTICLES

Victor V. Dyomin, Denis V. Kamenev

10th International Symposium of DISPLAY HOLOGRAPHY. 2015
AUTOMATION THE PROCESS OF CREATION A VIDEO FROM A TIME SEQUENCE OF DIGITAL HOLOGRAMS OF PARTICLES

Victor V. Dyomin, Denis V. Kamenev

10th International Symposium of DISPLAY HOLOGRAPHY. 2015
APPLICATION OF HOLOGRAPHIC METHODS FOR PARTICLES INVESTIGATION

- Plankton
- Aerosol
- Two-phase flows
- Biological particles
- Settling particles
- Blood cells
- Other...
- Combustion products
PLANKTON PARTICLES INVESTIGATION
EXTRACTING INFORMATION FROM HOLOGRAPHIC DATA

- Information about shape, size, location of each particle of the volume
- Information about particles ensemble:
  a. Particles concentration in volume/layer
  b. Particles size distribution
  c. Distribution of the particles in volume

The choice of calculating parameters depends on the scientific problem and the object of investigation

The aim of this work is automation the process of creation a video from a time sequence of digital holograms of particles
RECORDING AND RECONSTRUCTION OF DIGITAL HOLOGRAMS OF PLANKTON PARTICLES

1 - laser source, 2 - collimator, 3 - investigating volume with particles, 4 - CCD camera, 5 - reconstructing reference beam, 6 - hologram, 7 - reconstructed images
RECORDING AND RECONSTRUCTION OF DIGITAL HOLOGRAMS OF PLANKTON PARTICLES

1 - laser source, 2 - collimator, 3 - investigating volume with particles, 4 - CCD camera, 5 - reconstructing reference beam, 6 - hologram, 7 - reconstructed images
Method of the best focusing plane determination

<table>
<thead>
<tr>
<th>№</th>
<th>Method</th>
<th>short description</th>
<th>requirement of ROI detection / preprocessing</th>
<th>speed</th>
<th>error, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boundary contrast</td>
<td>Boundary contrast calculation for a number of reconstructed planes</td>
<td>+/+</td>
<td>3/5</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not more than 10 sec.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tenengrad</td>
<td>Based on calculation of intensity gradient for a number of reconstructed images using Sobel filter</td>
<td>+/-</td>
<td>4/5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Longitudinal intensity</td>
<td>Determination the minimal intensity for every transverse coordinate of reconstructed images</td>
<td>-/ -</td>
<td>5/5</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Entropy</td>
<td>Calculation the entropy for a number of reconstructed planes</td>
<td>+/-</td>
<td>4/5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Variance</td>
<td>Calculation the variance for a number of reconstructed planes</td>
<td>+/-</td>
<td>4/5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Brenner</td>
<td>Calculation the average values of intensity gradient (through one pixel) for a number of reconstructed planes</td>
<td>+/-</td>
<td>4/5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Correlation</td>
<td>Calculation the correlation coefficients between two specially selected reconstructed images</td>
<td>+/-</td>
<td>3/5 (depend on the number of rec. planes)</td>
<td>3</td>
</tr>
</tbody>
</table>
TRADITIONAL METHOD OF CREATION VIDEO BASED ON HOLOGRAPHIC DATA

1. Recording a time sequence of digital holograms
2. Reconstruction particles images from the hologram at various distances with adjusted step
3. Region of interest (RoI) determination
4. Determination the position of best focusing plane for every hologram of video sequence
5. Combining the reconstructed images in video
6. The analysis of the video (particles shape, size, concentration and so on)

- Such way is not useful for ensemble of small particles

To automate the process of holographic video creation we suggest to exclude the RoI determination
VIDEO BASED ON HOLOGRAPHIC DATA OF PLANKTON PARTICLE Epishura Baicalensis USING TRADITIONAL METHOD

Position of the best focusing plane attached to the marked particle
THE ALGORITHM OF 2D MAPPING OF HOLOGRAPHIC IMAGE OF THE VOLUME

Sections of the volume

Tenengrad

\[ T = \frac{1}{N_x \cdot N_y} \sum_{i=0}^{N_x-1} \sum_{j=0}^{N_y-1} G_{i,j} \]

Plankton digital hologram

Sobel masks

\[ G_{i,j} = \sqrt{S_x^2(i,j) + S_y^2(i,j)} \]

\[ S_{XM} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad S_{YM} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]
VIDEO BASED ON HOLOGRAPHIC DATA OF PLANKTON USING SUGGESTED METHOD

All images of particles of the registered volume are focused!
“LAYER BY LAYER” INVESTIGATION OF THE REGISTERED VOLUME WITH AIR BUBBLES IN WATER

Hologram of air bubbles in water

The refocusing from 110 to 200 mm

The refocusing from one plane to another
AUTOMATICALLY CREATED VIDEO RECIPIENT FROM TIME SEQUENCE OF AIR BUBBLES DIGITAL HOLOGRAMS

For fixed single reconstructing distance
(150 mm)

For all particles in registered volume
(depth 110-200 mm)
ADVANTAGES

- The use of suggested method allows automating the process of creation the video based on time sequence of holograms
- It excludes the procedure of search image of the same particle on different holograms of video sequence
- The visualization is much better
- Such videos are significantly more convenient for geometrical characteristics determination and for spatial coordination of the particles evaluation
RESULTS OF AUTOMATIC PLANKTON PARTICLES HOLOGRAMS PROCESSING

Depth of the volume is 70 mm

Particles distribution in volume

- Number of particles:
  - 10-20: 6
  - 20-30: 3
  - 30-40: 2
  - 40-50: 1
  - 50-60: 1

- Particles orientation, grad:
  - 30-60: 2
  - 60-90: 2
  - 90-120: 2
  - 120-150: 2
  - 150-180: 2

- Layers of the volume, mm:
  - 130-140: 2
  - 140-150: 2
  - 150-160: 2
  - 160-170: 2
  - 170-180: 2
Automatic estimation of sand particles concentration and evaluation of particles size distribution

Reconstructed image of sand particles monolayer

Particles size distribution

number of the particles

particles size, μm
THANKS FOR YOUR ATTENTION

WELCOME TO OUR WORKSHOPS ON FRIDAY

Victor Valentinovich Dyomin,
PhD, vice-rector
Tel. 8-(903)-914-39-75
e-mail: dyomin@mail.tsu.ru

Denis Vadimovich Kamenev,
PhD, researcher
Tel. 8-(961)-888-91-91
e-mail: kamenev87@mail.ru