ACADÉMIE DES SCIENCES.

SÉANCE DU LUNDI 30 MARS 1914.

PRÉSIDENCE DE M. P. APPEL.

MÉMOIRES ET COMMUNICATIONS
DES MEMBRES ET DES CORRESPONDANTS DE L'ACADÉMIE.

ASTRONOMIE. — Sur une méthode photographique directe pour la détermination des différences de longitudes. Note de M. G. Lippmann.

1. La méthode que j'ai l'honneur de soumettre à l'Académie a pour objet de mesurer une différence de longitude par un procédé plus direct, plus simple et plus rapide que la méthode actuellement en usage: on n'aurait plus à employer ni des lunettes méridiennes, ni leurs appareils renversés (micromètres impersonnels, chronographes imprimants), ni de mobiliser deux groupes d'observations pour faire une détermination.

2. La différence de la longitude entre deux stations est un angle constant : à savoir la distance qui sépare les deux zéniths, mesurée en ascension droite. Afin de mettre cette définition en œuvre directement, rendons le zénith de chaque station visible à un moment quelconque dans le Ciel, à l'aide d'un artifice optique décrit plus loin. Le zénith est visible sous la forme d'une étoile artificielle assez brillante pour venir en photographe instantanée. Photographions ainsi chaque zénith au milieu des étoiles, l'opération étant faite simultanément aux deux stations. Comme résultat de cette double opération, on a deux clichés où l'on voit les deux zéniths situés au milieu des étoiles. L'opération est alors terminée. Il ne reste plus qu'à réduire les deux clichés. La réduction des deux clichés donne la distance angulaire cherchée; c'est le Ciel qui fait office de cercle divisé.

Pour voir qu'il en est ainsi, imaginons d'abord que, par un hasard heureux, l'image du premier zénith coïncide exactement avec une étoile cata-
loguée \(\alpha \); que l'image du second zénith coïncide de même avec une étoile cataloguée \(\beta \). On tirera du Catalogue la distance en longitude des deux étoiles \(\alpha \) et \(\beta \); il est clair qu'elle est égale à celle des zéniths avec lesquels elles coïncident.

Cette double coïncidence sans doute ne se présentera pas; mais il arrive nécessairement que chaque zénith se trouve situé au milieu d'un groupe d'étoiles. Il suffira donc de rapporter chaque zénith aux étoiles environnantes; en d'autres termes, d'effectuer la réduction de chaque cliché, comme on le fait pour la confection du Catalogue photographique. En un mot, on traite les images des deux zéniths comme s'il s'agissait des images de deux étoiles photographiques dont on désire obtenir les coordonnées. Les méthodes de réduction des clichés sont celles en usage pour la confection du Catalogue photographique.

Il est nécessaire de photographier les deux zéniths instantanément et simultanément puisqu'ils suivent le mouvement diurne; la photographie des étoiles se fait au contraire en suivant leur mouvement; l'appareil photographique est donc monté équatoriallement, à moins qu'on ne préfère employer une chambre photographique fixe à plaque mobile, ou bien un cœlostat.

3. Il reste à indiquer l'artifice optique par lequel on rend le zénith visible à volonté dans le champ de la lunette sans masquer le Ciel; et, d'autre part, à dire comment on fait briller les deux zéniths dans les deux stations pendant un temps très court, et bien simultanément.

On rend le zénith visible à l'aide de l'appareil représenté schématiquement sur la figure et qui est une sorte de collimateur zénithal.
SÉANCE DU 30 MARS 1914. 911

Le collimateur CC, fixé sur pilier, porte en son foyer une glace argentée, sur l'argenture de laquelle une croix minuscule transparente est tracée au diamant : les rayons parallèles, émanés du centre de cette croix, sont réfléchis par la glace transparente MM, fixée au même pilier, et reçus ensuite dans la lunette photographique; la glace étant transparente, on photographie à la fois le ciel et la petite croix. Afin que celle-ci soit exactement au zénith, on rend les rayons réfléchis par la glace perpendiculaires à un bain de mercure, en opérant par autocollimation; le réglage de verticalité exécuté, on enlève le bain de mercure qu'on ne remet en place qu'à intervalles éloignés, pour vérification.

La lunette et la glace transparente étant fixées invariablement au pilier, le réglage de verticalité se fait en déplaçant micrométrique la plaque argénée à l'aide de vis de réglage qui ne sont pas représentées sur la figure.

4. Il faut que les étoiles artificielles qui sont fixées aux deux zéniths, soient brillantes, instantanées et qu'elles apparaissent simultanément aux deux zéniths. On éclaire donc chaque petite croix par une étincelle électrique, ce qui satisfait aux deux premières conditions. Pour qu'il y ait en plus simultanéité, il est nécessaire que les deux étincelles éclatantent jaillissent simultanément aux deux stations, quelle que soit la distance qui les sépare.

Supposons que les deux stations reçoivent les ondes hertziennes émises à chaque seconde par un poste tel que celui de la Tour Eiffel.

A chaque station on installe un appareil disposé et réglé de manière à produire une étincelle électrique juste au moment où arrive l'onde hertzienne. Ledit appareil se compose d'un moteur approprié, dont un axe fait un tour par seconde. Sur cet axe est fixé un bras métallique dont l'extrémité décrit une circonférence entière en une seconde, d'un mouvement uniforme; sur cette circonférence se trouve un plot conducteur P déplaçable que le bras tournant touche en passant.

L'observateur est muni d'un téléphone récepteur avec son détecteur; le bras mobile est d'ailleurs intercalé dans le circuit du téléphone. L'onde hertzienne ne sera donc perçue que si le bras tournant est en contact avec le plot P conducteur juste au moment où arrive l'onde hertzienne; on obtient cette coïncidence en déplaçant graduellement le plot jusqu'à ce que la coïncidence ait lieu; on entend dès lors le choc du téléphone et on entend désormais à chaque seconde.

D'autre part, l'axe tournant porte un second bras chargé de déclencher
l'étincelle ; l'étincelle éclate au moment où le plot P est touché, cette coincidence étant assurée mécaniquement par la construction de l'appareil. Il s'ensuit qu'à partir du moment où le plot P a été bien placé, l'étincelle éclate au moment où arrive l'onde hertzienne. Les mêmes conditions étant remplies aux deux stations, les deux étincelles éclatent au moment de l'arrivée de l'onde à chacune d'elles. On peut donc les considérer comme simultanées, sauf, à la rigueur, à tenir compte de la vitesse de propagation des ondes.

5. Les conditions de précision de cette méthode sont les mêmes que dans la confection du Catalogue photographique : même lunette photographique qui suit les étoiles, même réduction des clichés ; la seule différence est que l'étoile projetée au zénith est une étoile artificielle. On peut donc espérer avoir la même précision pour le résultat, c'est-à-dire une fraction de seconde d'arc.

Dans les deux cas, la méthode est différentielle, la réduction des clichés est une sorte d'interpolation, et l'approximation finale ne dépend que de l'approximation avec laquelle la position des étoiles de référence est fournie par les mesures exécutées dans les Observatoires. Ces mesures se font et se recommencent à loisir toute l'année. Mais l'opération propre à la mesure de la différence de longitude n'exige que la prise d'une paire de clichés.

Il suffit, à la rigueur, de faire éclater la double étincelle une seule fois pendant la pose du cliché. Mais il est aussi simple de laisser éclater l'étincelle plusieurs fois, douze fois par exemple, de 3o en 3o secondes. On obtient ainsi douze couples de points qui donnent douze valeurs de la différence de longitude, et l'on peut prendre la moyenne. En outre, il faut remarquer que les douze points ainsi inscrits sont exactement situés sur la parallèle de la station, et équidistants. On a ainsi deux données qui n'existent pas sur les clichés du Catalogue : un parallèle et, sur ce parallèle, une échelle des temps directement inscrites.

La réduction du cliché est par là facilitée, et l'échelle des temps étant obtenue directement, la précision des résultats peut être augmentée.

Le nom de Minervite fut donné par l'auteur du présent Mémoire à un phosphate d'alumine hydraté complexe qu'il découvrait en 1913 dans la grotte de la Coquille, près Minerve (Hérault). Il y existe en amas et filons